快捷搜索:论文 合同 演讲 心得

切比雪夫不等式的推广与应用

切比雪夫不等式的推广与应用

切比雪夫不等式的推广与应用

摘要:在估计某些事件的概率的上下界时,常用到著名的切比雪夫不等式.本文从4个方面对切比雪夫不等式进行推广,讨论了切比雪夫不等式在8个方面的应用,并证明了随机变量序列服从大数定理的1个充分条件.最后给出了切比雪夫不等式其等号成立的'充要条件,并用现代概率方法重新证明了切比雪夫不等式.

关键词:切比雪夫不等式;随机变量序列;强大数定理;几乎处处收敛;大数定理. The Popularization and Application of Chebyster’s Inequality

Abstract:The famous Chebyshev’s Inequality is usually used when estimating the boundary from above or below of probability . The paper presents popularization from four respects. First, the paper discusses its application in eight aspects and demonstrates a complete condition that the foundation of random number sequence coconforms to he Law of Large Numbers theorem. And then , the author analyzes its complete and necessary condition for foundation of Chebyshev’s Ineuquality. Furthermore, the paper makes a demonstration again for Chebyshev’s Inequality with the method of modern probability.

Key words: Cherbyshev’ Inequality; Random number sequence; Law of Large Numbers; Almost Everywhere Convergence;Law of Strong Large Numbers.

目 录

中文标题……………………………………………………………………………………………1中文摘要、关键词…………………………………………………………………………………1英文标题……………………………………………………………………………………………1英文摘要、关键词…………………………………………………………………………………1正文§1 引言……………………………………………………………………………………………2§2切比雪夫不等式的推广 ………………………………………………………………………2§3切比雪夫不等式的应用 ………………………………………………………………………53.1 利用切比雪夫不等式说明方差的意义………………………………………………………53.2 估计事件的概率………………………………………………………………………………53.3 说明随机变量取值偏离EX超过3 的概率很小 ……………………………………………73.4 求解或证明有关概率不等式…………………………………………………………………73.5 求随机变量序列依概率的收敛值……………………………………………………………93.6 证明大数定理…………………………………………………………………………………113.7 证明强大数定理………………………………………………………………………………123.8 证明随机变量服从大数定理的1个充分条件………………………………………………20§4切比雪夫不等式等号成立的充要条件 ………………………………………………………22§5 结束语…………………………………………………………………………………………25参考文献……………………………………………………………………………………………26致谢…………………………………………………………………………………………………27

【包括:毕业论文、开题报告、任务书】

【说明:论文中有些数学符号是编辑器编辑而成,网页上无法显示或者显示格式错误,给您带来不便请谅解。】

您可能还会对下面的文章感兴趣: